

DCAM560C ToF Camera Specification

DCAM560C Pro

DCAM560C Lite

Table of Contents

1	General Inf	formation	4
	1.1 Term	ns of Use	4
2	Precautions	s	6
	2.1 Safe	Usage Instructions	6
	2.2 Pow	er	6
	2.3 Usag	ge	7
	2.4 Tem	perature	7
3	Specification	ons and Requirement	8
	3.1 Gen	eral Specifications	8
	3.2 Elec	trical Specifications	9
	3.2.1	Recommended Operating Conditions	9
	3.2.2	Power Consumption	9
	3.2.3	Absolute Maximum Ratings	9
	3.3 DCA	M560C Pro Dimension	10
	3.4 DCA	M560C Lite Dimension	11
	3.5 Option	cal Specifications	12
	3.5.1	Field of View	12
	3.5.2	Wavelength of the VCSEL	12
	3.6 Work	king Condition Requirements	13
	3.6.1	Hardware Requirements	13
	3.6.2	Software Requirements	13
	3.6.3	Environmental Requirements	13
	3.6.4	Coordinate of the Camera System	14
4	Interface w	rith Host	15
	4.1 DCA	M560C Pro Interface	15
	4.2 DCA	M560C Lite Interface	18
	4.3 LED	Indication	21
5	Principle of	f Time of Flight	22
	5.1 Vzer	nse ToF Principle	22
	5.2 Nois	e Factors	22
	5.2.1	Ambient Light	22
	5.2 Multi	ipath Propagation	22
	5.3 Refle	ectivity of the Target	23
	5.4 Scat	ttering Effect	23
6	Installation		24
	6.1 Hard	dware Installation	24
	6.1.1	DCAM560C Pro Installation Steps	24
	6.1.2	DCAM560C Lite Installation Steps	
	6.1.3	PoE Mode Installation (Only For DCAM560C Pro)	25
	6.2 Soft	ware Installation	26
	6.2.1	How to get	26
	6.2.2	Graphic Tool on windows	26

			_ ·	0.7
	(6.2.3	Frameviewer	
	(6.2.4	Default IP address	27
	6.3	Firmv	ware Upgrade	27
	6.4	Produ	uct State Machine	29
	6.5	Softw	vare Command Set	29
7	Feat	ures		30
	7.1	Slave	e Trigger Mode	30
	7.2	Rang	ge Customization	30
	7.3	_	Dynamic Range	
	7.4		Filtering	
	7.5		nage	
8	DCA		Accessories and Package	
9			ion Service	
App	endix	,		36
			laration	
	Lase	r Spec	ification	36
		-	acturer	
		Factory	y	37
			nent	
Re			/	
			,	

1 General Information

The purpose of this document is to familiarize the customer with the correct operation of the Vzense ToF DCAM560C products family. This document provides important information about the camera's features, hardware specification, safe use of the camera, and installation procedures.

DCAM560C series have two configuration, DCAM560C Pro and DCAM560C Lite.

DCAM560C Pro can be powered either by DC power or Power over Ethernet, and IP67 rating enclosure to resist dust and water.

While DCAM560C Lite can only be powered by DC power and NOT IP67 rating.

1.1 Terms of Use

Vzense offers a 1-year-warranty for this ToF product.

Warranty Information

Please do follow the guidelines below when using the Vzense camera:

Do not remove the product's serial number label

Warranty will be void, if the label is damaged or removed and the serial number can't be read from the camera's registers.

Do not disassemble the product housing

Do not disassemble the housing. Touching any internal components may damage the products.

Prevent any objects or substances from entering the product housing, otherwise the product may fail or damaged.

Avoid electromagnetic areas

Do not use the camera near strong electromagnetic areas. Prevent the product from electrostatic charging.

Transport in original packaging

Transport and store the camera in its original packaging only. Suggest not to discard the packaging.

Clean with care

If you have to clean the housing of the camera, follow the guidelines in the notice as below:

- Use a soft, dry cloth that won't generate static during cleaning;
- To remove tough stains, use a soft cloth dampened with a small amount of neutral detergent(Pure water or alcohol); after that wipe dry;

 Make sure no any residual detergent after cleaning, before reconnecting the camera to power

Read the manual

Do read the manual carefully before using the camera.

2 Precautions

2.1 Safe Usage Instructions

DANGER

Electric Shock Risk

Non-standard and improper power supplies may result in fire and electric shock. You must confirm the camera power supply used that meets the absolute specification of voltage and current.

CAUTION

Invisible Radiation

This camera uses laser to work, improper use may damage the eye. Lasers are classified as risk group 1 (low risk) according to EN 60825 which means that the product presents no risk related to exposure limits under normal usage conditions. Eye safety is only guaranteed when the camera is used properly

2.2 Power

The DCAM560C Pro can work with either Power over Ethernet or external DC power; DCAM560C Lite can only work with external DC power.

For PoE power source, the PSE device shall apply the PoE+ standard (802.3at) or above, lower than that may cause the product doesn't work well or even be damaged.

The DC power can accept 11V~26V power source. For higher than 26V or lower than 11V, the device shall not work well or even be damaged.

Vzense doesn't produce PoE injector, but we can purchase it from 3rd party and ship to customer at original cost.

Below is the PoE+ injector available vendor list.

Vendor	Model Number
H3C	EWPAM2NPOE
TP LINK	TL-POE170S

2.3 Usage

Don't try to open the camera housing. Each camera has been calibrated at the factory to achieve precise measurements. Touching internal components may damage the camera and cause calibration data lost.

Incorrect plugging in and unplugging of the camera's power cable can damage the camera. To avoid switch-on surges damaging the camera, please plug in the power cable into the camera's power connector firstly before getting power source on.

Don't try to change the position of the lens, may cause damage to the camera.

Do store the camera carefully when not in use, in original package the best.

2.4 Temperature

To avoid damaging the camera and to achieve best performance, please observe the maximum and minimum housing temperatures in Section 3.1

3 Specifications and Requirement

3.1 General Specifications

Specification	Vzense DCAM560C	
Technology	ToF (Time-of-flight) Depth Camera	
Depth Sensor Resolution and Frame rate	640 x 480(VGA)@30FPS	
Output Formats	Depth & IR Map (RAW12)	
Depth Sensor Field of View	Typical: H-69°V-51°	
H-Horizontal, V-Vertical(degree)	(customizable, up to H 120° V90°)	
RGB Sensor Resolution and Frame Rate	1600*1200@30fps	
RGB Sensor FOV	H-77 °V-55°	
Use Range	0.16m \sim 6m(max. 6meters, customizable)	
Accuracy	<1%	
Power Consumption	Average Max. 6W(Ref)	
Illumination	940nm, 2 x 2W VCSEL	
Dimension/L*\//*LI\	DCAM560C Pro:105mm*65mm*72.65mm	
Dimension(L*W*H)	DCAM560C Lite: 105mm*65mm*60mm	
Weight	DCAM560C Pro: 550g	
weight	DCAM560C Lite: 520g	
Power Supply	DCAM560C Pro: PoE+ or DC power	
rowel Supply	DCAM560C Lite: DC power	
Interface	Gigabit Ethernet and RS485	
Digital I/O	1in/1out	
(Exposure Control, Synchronization etc.)	Passive Sync Signal	
Enclosure Rating	DCAM560C Pro: IP67	
Eliciosure Rating	DCAM560C Lite: IP42	
Working/Storage Temperature	-20°C-50°C/-30°C-70°C	
Software	C/C++/Python/ROS SDK	
Operation System	Windows 7/8/10, Linux, Arm Linux/ROS	
Cooling	Passive, no fan	
Certification	FCC/CE/FDA	
Eye safety	Class 1	

3.2 Electrical Specifications

3.2.1 Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Тур.	Max	Units
DC Power	VDD		11	12	26	V
Digital I/O	Vout	Work		5		V
(Exposure_timing)		mode				
Digital I/O	Vin		3.3		20	V
(Ext_Trigger)						
RS485			-12		12	V
Operating Temperature	Та		-20		50	°C
Operating humidity			20		80	%
Storage humidity			20		80	%
Storage temperature			-30		70	°C

3.2.2 Power Consumption

Parameter	Conditions	Average	Max	Units
Range 0	160mm-1100mm @30fps	221	260	mA
Range 1	500mm-2800mm@30fps	370	467	mA
Range 2	750mm-4500mm@30fps	460	638	mA
Range 5	1000mm-6000mm@15fps	415	960	mA

Note: 12V input voltage

3.2.3 Absolute Maximum Ratings

This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not promised. Exposure to maximum rating conditions for extended periods may affect device reliability

Parameter	Symbol	Conditions	Min	Тур.	Max	Units
DC Power	VDD		10	12	26	٧
Digital I/O	Vin		-0.3		20	٧
(Ext_Trigger)						
RS485			-13.2		13.2	V
Operating Temperature	Та		-20		50	°C

3.3 DCAM560C Pro Dimension

This drawing contains information about the dimensions and user mounting location of the ToF Camera

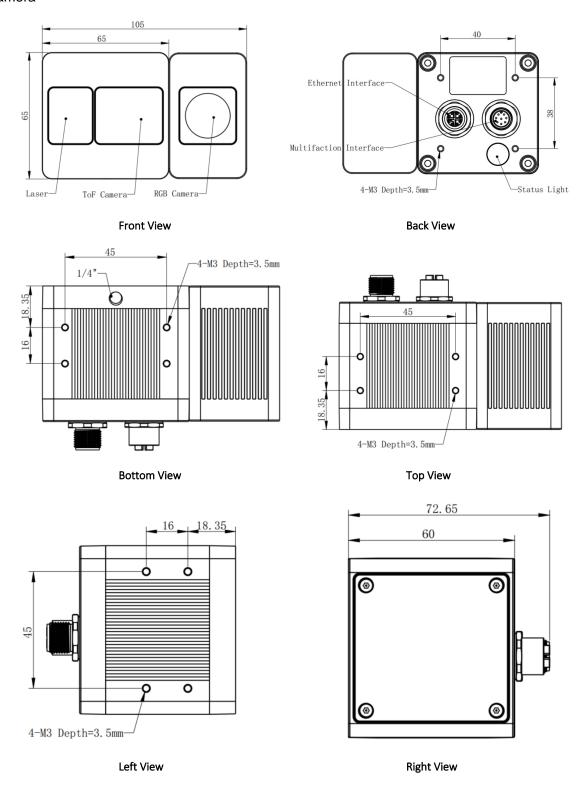


Fig. 3.1: ToF Camera Dimensions: (Unit:mm)

3.4 DCAM560C Lite Dimension

This drawing contains information about the dimensions and user mounting location of the ToF Camera.

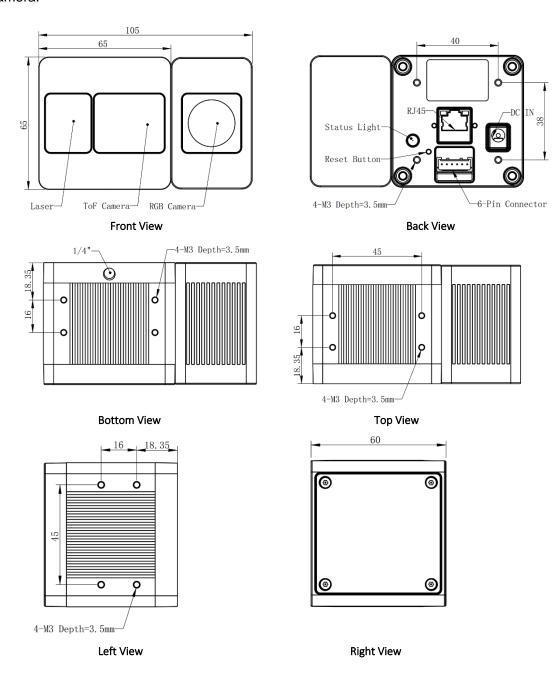


Fig. 3.2: ToF Camera Dimensions:(Unit:mm)

3.5 Optical Specifications

3.5.1 Field of View

The field of view refers to the view angle of the ToF products. The TOF sensor's aspect ratio is 4:3, typically the horizontal field of view is larger than the vertical field of view. The DFOV (see figure below) is the angle subtended by the diagonal of the camera sensor onto the center of the lens.

The definition of HFOV and VFOV can be exchanged, i. e. we can rotate the camera sensor to have larger FOV at vertical direction.

Typical FOV of DCAM560C Series is 69°*51°, we can do FOV customization if the customer requires, and reasonable NRE fee shall be charged.

3.5.2 Wavelength of the VCSEL

All our product are based on VCSEL laser. We have variety choices according to the lens FOV and wavelength. The laser FOV must match to the lens FOV, and the wider FOV products need stronger power, therefore higher power consumption. Even with higher power supplied, the laser power per angle of the wider FOV product may be reduced, so normally the maximum distance of wider FOV products is shorter than narrower FOV products.

As for the wavelength, we have 850nm and 940nm laser selection. Because of the silicon process based ToF sensor, the ToF sensor's QE of 850nm is much better than it of 940nm. That means normally 850nm product can reach longer distance or the same distance with lower power consumption;

But the 940nm wavelength has better performance under strong sunlight, especially when the ambient light is stronger than 20K LUX.

Below are the laser choices we can provide, if you have other needs, please let us know.

H69°, V51°--- 2W, 940nm

H110°, V85°--- 2W, 850nm

3.6 Working Condition Requirements

3.6.1 Hardware Requirements

DCAM560C Pro:

- CAT6A Ethernet cable (Included in package)
- 8 PIN A CODE Multiple Functional cable. (Included in package)

Or

■ PoE+ Power Supplier. (Not included in package)

DCAM560C Lite:

- CAT5 Ethernet cable (Included in package)
- 6 PIN cable which provide interface with host. (Included in package)
- DC Power cable. (Included in package)

3.6.2 Software Requirements

Operating system

- 32-bit Windows 7/10
- 64-bit Windows 7/10 (recommended)
- Linux (x86, x64)

Vzense ToF Driver

The Vzense ToF Driver software is available for Windows, Linux, ARM Linux operating systems and includes the following:

- SDK code
- Sample code
- Software user manual

3.6.3 Environmental Requirements

Temperature and Humidity

Housing temperature during operation:	-20–50 °C
Humidity during operation:	20-80 %, relative
Storage temperature:	-30–70 °C
Storage humidity:	20-80 %, relative

Heat Dissipation

Users can provide sufficient heat dissipation, like mounting the camera on a substantial, thermally conductive component that can act as a heat sink. Or a fan can be used to provide an air flow over the camera.

3.6.4 Coordinate of the Camera System

There are two coordinate system need to be understood, one is camera coordinate system (CCS), one is world coordinate system (WCS).

CCS: CCS describe the two-dimensional data, the origin of coordinates is the optic center.

WCS: WCS describe the three-dimensional information.

The CCS data can switch to the WCS data using the camera internal parameters.

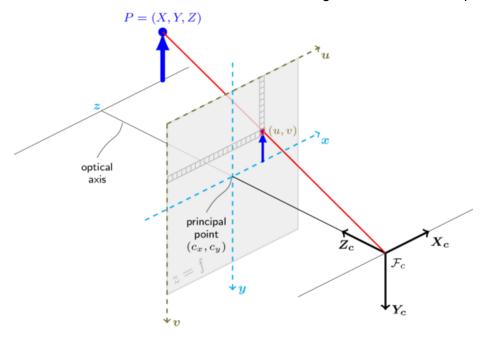
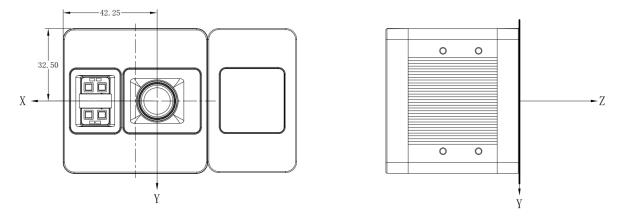
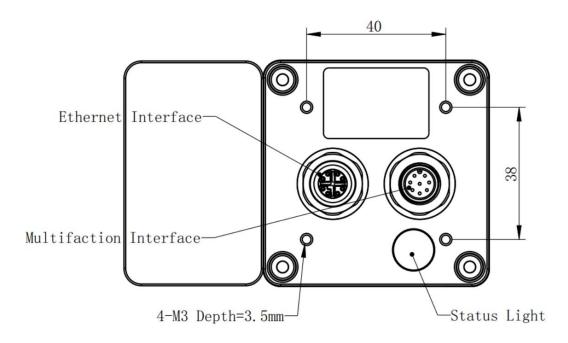



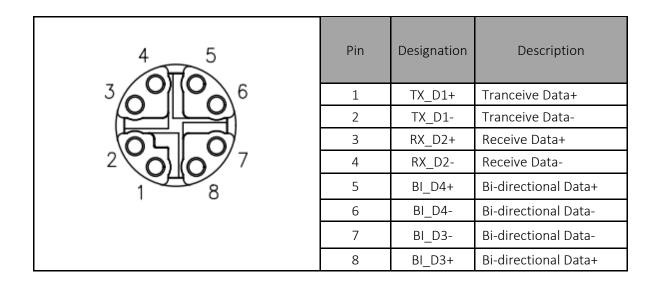
Fig. 3.3: Origin of the Coordinate System

The origin of the coordinate system is defined as the below figure shows:

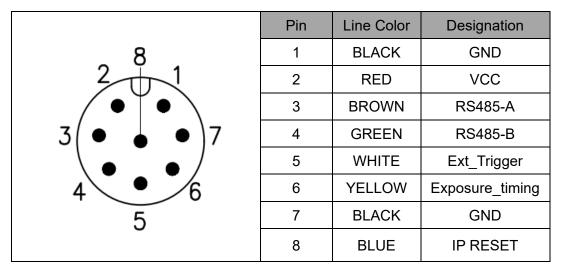
- 1. X coordinate locates 32.5mm from the top edge of the camera;
- 2. Y coordinate locates 42.25mm from the left edge of the camera;
- 3. Z coordinate is zero offset at the front of the camera housing;


Meshlab and CloudCompare tools are recommended to analyze the point cloud data saved by Vzense software or SDK method.

4 Interface with Host


4.1 DCAM560C Pro Interface

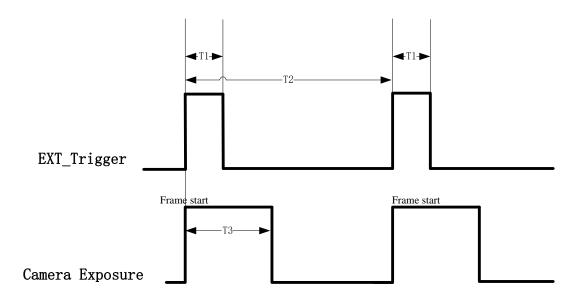
DCAM560C Pro is equipped with two M12 aviation connectors at the back of its housing as shown in below figure.


For more information about pin assignments and connector types, see the following sections.

8PIN-X CODE Ethernet Interface

8PIN-A CODE Multiple Functional Interface

Pin	Designation	Direction	Description
1.7	GND	GND	GND
2	VCC	Power	DC 12-24V
3	RS485-A	I/O	RS485-A
4	RS485-B	I/O	RS485-B
5	Ext_Trigger	INPUT	External trigger input(3.3V-20V)
6	Exposure_timing	OUTPUT	Control signal output
			Pull high (3.3V-20V) for 10 seconds
8	IP RESET	INPUT	then the IP is reset as
			192.168.1.101.


Hardware Trigger Function

Hardware trigger mode is available only when the camera works at slave mode, in slave mode the camera will wait for the hardware trigger signal on Ext_Trigger.

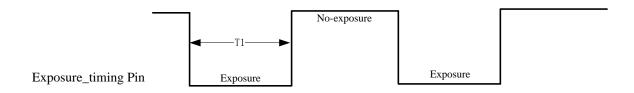
The EXT_Trigger signal is to driver the MOSFET, External input trigger signal voltage should range 3.3V-20V, driving current ability should be more than 5mA;

You can use input pin Ext_Trigger to send a hardware trigger signal to the camera. The hardware trigger can be used to trigger the acquisition start. A hardware debouncer circuit shall be considered on the EXT_Trigger line.

By default, the hardware trigger is **rising edge** activated, refer to below exposure timing:

The

requirement to T1 should be from 100us to 2ms;


T2 means the interval between two trigger signals, it MUST be more than 33ms;

T3 means the exposure time of the frame, it varies according to the range mode;

Exposure_timing Pin Description

This pin is an output indicates the whole exposure period of the camera. The internal circuit of this pin with a pull-up resistor 430 Ω .The pull up voltage is 5V. At low level, the pull-down resistor is 100 Ω .

By default, the polarity is low level activated, which means a low-level signal indicates the exposure period. Please refer to below figure:

T1 means the exposure time of the frame, it varies according to the range mode;

4.2 DCAM560C Lite Interface

DCAM560C Lite is equipped with RJ45, LED, 6pin connector, IP reset button at the back of its housing as shown in below figure.

For more information about pin assignments and connector types, see the following sections.

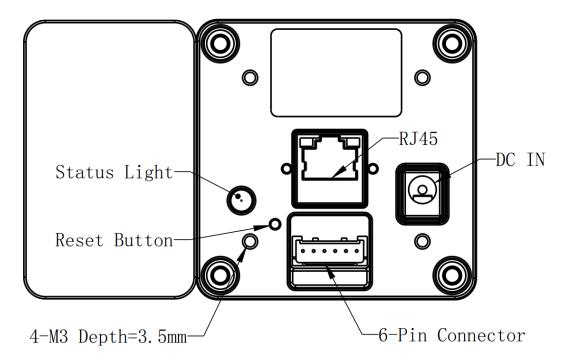


Fig. 4.2: Camera Connectors

6PIN Connector for DCAM560C Lite

The 6pin connector includes the one physical input signals and one physical output signal, RS485 signal.

The pin assignments and pin numbering for the receptacle are as shown in below table.

The connector of the camera is a Molex receptacle, part number 535170630. The recommended mating connector is a Molex plug, part number 511030600.

	Pin	Line Color	Designation
	1	BROWN	RS485-A
	2	GREEN	RS485-B
6 5 4 3 2 1	3	WHITE	Ext_Trigger
	4	YELLOW	Exposure_timing
	5	BLACK	GND
	6	RED	Ext_OUT

Pin Description

Pin	Designation	Direction	Description	
1	RS485-A	I/O	RS485-A	
2	RS485-B	I/O	RS485-B	
3	Ext_Trigger	INPUT	External trigger input (3.3V-20V)	
4	Exposure_timing	OUTPUT	Control signal output	
5	GND	GND	System ground	
6	Ext_OUT	OUTPUT	Control signal output from processor	

Hardware Trigger Function

Hardware trigger mode is available only when the camera works at slave mode, in slave mode the camera will wait for the hardware trigger signal on Ext_Trigger.

The EXT_Trigger signal is to driver the MOSFET, External input trigger signal voltage should range 3.3V-20V, driving current ability should be more than 5mA;

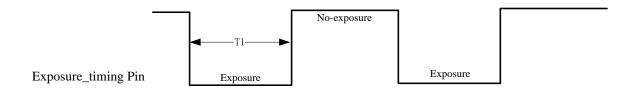
You can use input pin Ext_Trigger to send a hardware trigger signal to the camera. The hardware trigger can be used to trigger the acquisition start. A hardware debouncer circuit shall be considered on the EXT_Trigger line.

By default, the hardware trigger is **rising edge** activated, refer to below exposure timing:

The

requirement to T1 should be from 100us to 2ms;

T2 means the interval between two trigger signals, it MUST be more than 33ms;

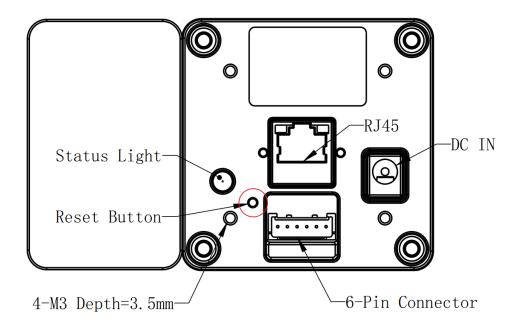

T3 means the exposure time of the frame, it varies according to the range mode;

Exposure_timing Pin Description

This pin is an output indicates the whole exposure period of the camera. The internal circuit of

this pin with a pull-up resistor 430 Ω .The pull up voltage is 5V. At low level, the pull-down resistor is 100 Ω .

By default, the polarity is low level activated, which means a low-level signal indicates the exposure period. Please refer to below figure:



T1 means the exposure time of the frame, it varies according to the range mode;

RJ45 Ethernet Connector for DCAM560C Lite

DCAM560C Lite has the standard RJ45 interface for Ethernet transmission.

IP Reset Button for DCAM560C Lite

A hidden button hole is for IP reset, a pin shall be used to press the button. While the camera is powered on, long pressing the button for 10 seconds until the LED is off. Then the IP is reset as 192.168.1.101.

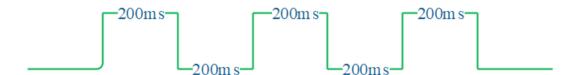
4.3 LED Indication

An LED at the back side of the camera indicates the camera status.

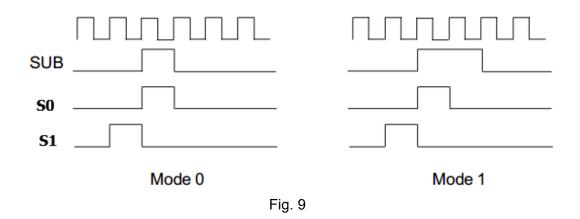
The LED animation table is shown as below:

Ethernet Broadcast, no connection established, BLUE LED blinking repeatedly

Ethernet connection established, BLUE LED constantly on


IP RESET, Press the IP RESET button for 5 seconds, PURPLE LED is on for 5 seconds and blink twice then the product reset itself.

Firmware Upgrade, WHITE LED is on until firmware upgrade finished

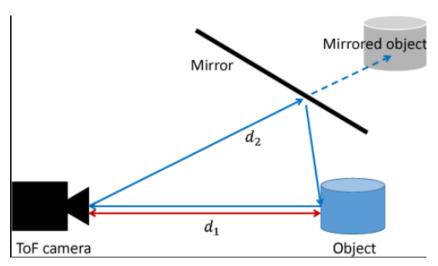

ToF driver Upgrade, GREEN LED blinking repeatedly

5 Principle of Time of Flight

5.1 Vzense ToF Principle

Vzense DCAM560C product principle is based on range-gated imaging ToF solution, and the sensor inside is based on Panasonic CCD sensor MN34906.

- Mode #0:
 - 1T,
 - Best LD pulse number,
 - good for distance from 10cm to 3.3m


$$Z = \frac{S_1}{S_0 + S_1}$$

Because the ToF distance measurement relies on the reflection of light sent out by the camera, any additional light, e.g. artificial light sources or sunlight, may influence the measurement results.

A strong ambient light may affect the accuracy and precision of the depth data, the Zense DCAM 560C is suggested to in user below 50K LUX ambient light.

5.2 Multipath Propagation

Based on the principle of ToF, Multipath effect may happen when the light reflected more one once. Any light that has been reflected several times, by other objects in the camera's field of view or the environment can cause deviation to the measurement result.

To eliminate the multipath effect, you should:

- 1. Keep the camera working environment as clean as possible;
- 2. Avoid the camera be placed at concave forms environment, like corners of a room or inside of a narrow space;
- 3. Highly-reflective object shall be removed far away from the measurement target;

5.3 Reflectivity of the Target

Please note that different reflectivity of the target may cause measurement result deviation, objects which have 20% to 80% reflectivity to 850nm or 940nm infrared light have the best result.

5.4 Scattering Effect

Scattering light effect is a noise factor to ToF products, it is caused by multiple reflection inside the lens of camera or the cover of camera.

To eliminate the scattering light effect, you should:

- 1. Keep the cover glass of the camera clean;
- 2. Do NOT place any other cover glass in front of the camera;
- 3. Keep the camera working environment as clean as possible;

6 Installation

6.1 Hardware Installation

You have read and understood the warnings listed under "Precautions" on Chapter 2; To achieve reliable distance measurements, please follow below tips:

- Better not using the camera in strong sunlight. If have to, keep the ambient light below 50k Lux.
- Do NOT place any objects in the scene that are not part of your intended target, especially mirrors or other shiny surfaces/objects.
- Maintain a stable housing temperature during operation.
- Take measures to provide cooling to camera
- Mount the camera robustly.
- All accessories are ready

6.1.1 DCAM560C Pro Installation Steps

The steps are as below:

- 1. Mount the camera in an appropriate fixture, e.g. a camera bracket;
- 2. Connect the DCAM560C Pro ToF camera to the host processor with the Ethernet cable, the standard RJ45 socket locates at the back of the DCAM560 Lite camera;
- 3. Insert the DC connector of the power supply adaptor into the 12V DC Jack at the back of the camera:
- 4. Connect the adaptor to power source;
- 5. Please do set the IP address of the camera and host PC in the same segment;
- 6. The default IP address of DCAM560 Lite is 192.168.1.101, you can change the IP address by the VzenseConfigTool;

China: https://gitee.com/Vzense/VzenseConfigTool
Oversea: https://github.com/Vzense/VzenseConfigTool

Please do read the document before reconfigure the camera:

6.1.2 DCAM560C Lite Installation Steps

DCAM560 Lite product transmits the required data to host by Ethernet cable, and it doesn't support Power over Ethernet, so the power adaptor shall be used.

The steps are as below:

- 1. Mount the camera in an appropriate fixture, e.g. a camera bracket;
- 2. Connect the DCAM560 Lite ToF camera to the host processor with the Ethernet cable, the standard RJ45 socket locates at the back of the DCAM560 Lite camera;

- 3. Insert the DC connector of the power supply adaptor into the 12V~24V DC Jack at the back of the camera;
- 4. Connect the adaptor to power source;
- 5. Please do set the IP address of the camera and host PC in the same segment;
- 6. The default IP address of DCAM560 Lite is 192.168.1.101, you can change the IP address by the VzenseConfigTool;

China: https://gitee.com/Vzense/VzenseConfigTool
Oversea: https://github.com/Vzense/VzenseConfigTool

Please do read the document before reconfigure the camera:

	Update KEAUME.md	11 months ago
	Update Ver1.0.10	2 months ago
■ VzenseConfigTool.exe	Update Ver1.0.10	2 months ago
■ VzenseConfigTool使用说明.pdf	update doc	10 months ago
∀zense_ConfigTool_User_Guide.pdf	add user guide	8 months age
msvcp140.dll	first edition release	11 months ago
msvcp140.dll vc2015_redist.x86.exe	first edition release Update Ver1.0.9	11 months ago 4 months ago
vc2015_redist.x86.exe	Update Ver1.0.9	4 months ago

6.1.3 PoE Mode Installation (Only For DCAM560C Pro)

What is PoE+ (Power Over Ethernet)

Power over Ethernet (PoE+) is a technology that lets network cables carry electrical power. It simplifies the topology of the Ethernet system by reducing the dedicated power cable, a PoE switch or injector shall be in use to support the PoE feature.

For Vzense DCAM560C camera, the POE Switch or POE injector needs to support IEEE 802.3at-2009 standard also known as PoE+, which can provide up to 25.5W, or IEEE 802.3bt-2018 standard also known as PoE++, which can provide up to 60W. Otherwise the product may not work well at long range mode.

We can provide optional PoE switch or PoE injector to our customers, please try to contact the sales for the quotation and more information.

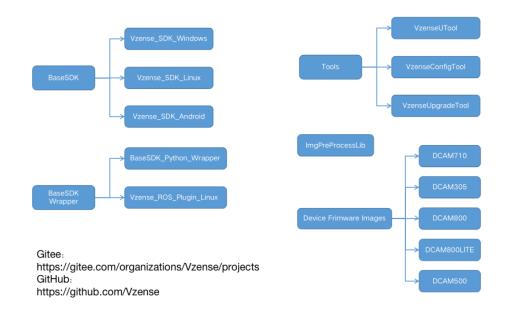
Steps to Setup PoE Mode

As mentioned above, a PoE switch or PoE injector shall be in use to setup the PoE; The steps are as below:

- 1. Mount the camera in an appropriate fixture, e.g. a camera bracket;
- 2. Plug one end of the Ethernet cable into the RJ45 socket at the back of the camera, and plug the RJ45 end into the Ethernet port of your PoE switch or PoE injector;
- Connect the PoE switch or PoE injector to your host processor by Ethernet cable;
- 4. Connect the PoE switch or PoE injector to power source;

6.2 Software Installation

6.2.1 How to get


Windows SDK:

China: https://gitee.com/Vzense/Vzense_SDK_windows
Oversea: https://github.com/Vzense/Vzense_SDK_windows

Linux SDK:

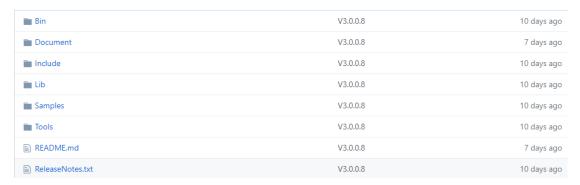
China: https://gitee.com/Vzense/Vzense SDK linux

Oversea: https://github.com/Vzense/Vzense SDK linux

6.2.2 Graphic Tool on windows

Vense uTool is a graphic tool on windows for the all Vzense ToF products.

Download or clone uTool evaluation tool from our GitHub /Gitee:


China: https://gitee.com/Vzense/UTool
Oversea: https://github.com/Vzense/UTool

Please do read the Vzense_UTool_User_guide.pdf in the folder before using.

Qt5Widgets.dll	2020/4/7 11:55	应用程序扩展	4,386 KB
📓 UTool.ini	2021/1/13 10:36	配置设置	1 KB
version	2021/1/29 20:59	文件	1 KB
vzense_api.dll	2021/1/29 20:40	应用程序扩展	1,166 KB
Vzense_UTool_User_Guide.pdf	2020/8/25 14:20	Foxit Reader PD	1,739 KB
™ VzenseUTool.exe	2021/2/1 9:16	应用程序	1,792 KB
📓 VzenseUTool用户手册.pdf	2020/8/25 13:51	Foxit Reader PD	1,840 KB

6.2.3 Frameviewer

Frameviewer is an opensource application in SDK project that can guide user how to call the SDK APIs. It has a pre-build version app in Tools folder, the source code is in Samples folder. See the document for the details.

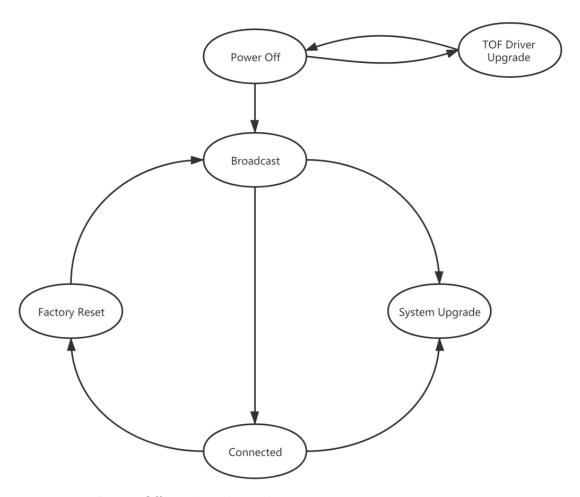
6.2.4 Default IP address

The default IP address of the DCAM560C is 192.168.1.101, if you want to set the IP with others or enable DHCP method, please find Vzense Config Tool to change the default setting:

Download VzenseConfigTool from:

China: https://gitee.com/Vzense/VzenseConfigTool
Oversea: https://github.com/Vzense/VzenseConfigTool

6.3 Firmware Upgrade


Download the VzenseUpgradeTool from below link:

China: https://gitee.com/Vzense/VzenseUpgradeTool
Oversea: https://github.com/Vzense/VzenseUpgradeTool

Please read the Vzense_UpgradeTool_User_Guide.pdf before upgrading firmware.

p=4.1.2.	INKVH\A1	~=	~-
platforms	2021/7/28 12:38	文件夹	
Upgrade	2021/7/28 12:38	文件夹	
ImgPreProcess.dll	2021/7/16 9:30	应用程序扩展	10,632 KB
msvcp140.dll	2021/7/16 9:30	应用程序扩展	440 KB
Qt5Core.dⅡ	2021/7/16 9:30	应用程序扩展	4,646 KB
Qt5Gui.dll	2021/7/16 9:30	应用程序扩展	4,843 KB
Qt5Widgets.dll	2021/7/16 9:30	应用程序扩展	4,348 KB
README.md	2021/7/16 9:30	MD 文件	1 KB
ReleaseNotes.txt	2021/7/16 9:30	文本文档	1 KB
version version	2021/7/16 9:30	文件	1 KB
vzense_api.dll	2021/7/16 9:30	应用程序扩展	1,166 KB
Vzense_UpgradeTool_User_Guide.pdf	2021/7/16 9:30	Foxit Reader PD	713 KB
™ VzenseUpgradeTool.exe	2021/7/16 9:30	应用程序	195 KB

6.4 Product State Machine

- Power Off: product do not have any power
- Broadcast: broadcast IP address, socket have not connected
- Connected: socket is connected, product can transfer image and answer host command
- Factory Reset: resume all data to factory setting
- TOF Driver Upgrade: product is in upgrading of TOF driver
- System Upgrade: product is in upgrading of firmware

6.5 Software Command Set

DCAM560C support different work mode like depth_30, IR_30, depth&IR_30.

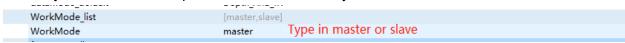
Four default ranges: range $0(0.16m\sim1.1m)$, range $1(0.5m\sim2.8m)$, range $2(0.75m\sim4.5m)$, range $5(1.0m\sim6.0m)$.

User can use Frameviewer to try the different command or can use the APIs to control the camera. The details please reference the SDK documents.

.

7 Features

7.1 Slave Trigger Mode


At slave trigger mode, the DCAM560C product outputs image only at every trigger signal happens.

Step 1: set the DCAM560C as slave trigger mode:

Two ways can set the DCAM560C product at slave trigger mode:

- 1) Call API Ps2_SetSlaveModeEnabled(PsDeviceHandle device, uint32_t sessionIndex, bool bEnabled), before Ps2_StartStream();
 - This way requires calling the API every power cycle. You can refer to the sample code in the SDK library;
- 2) Use Vzense Config Tool to set the the default mode as slave mode;

This way can hardcode the product as slave mode by default.

Configure the product at either master or slave mode; You shall type in one workmode in the list, case sensitive.

Step 2: Feed the DCAM560C with a correct hardware trigger signal.

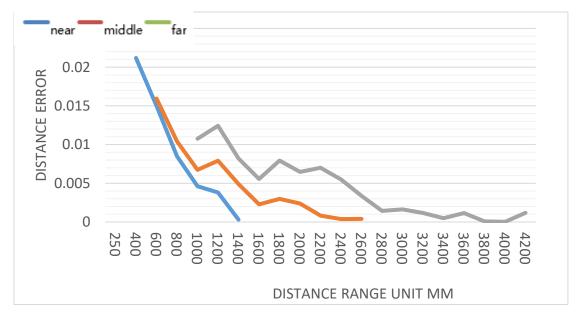
Please refer to **4.3 Pin Connector** for the requirement to the hardware trigger signal;

A hardware trigger source could be generated by a MCU GPIO or any clock source which can meet the requirement.

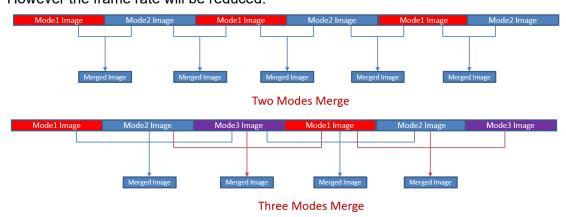
7.2 Range Customization

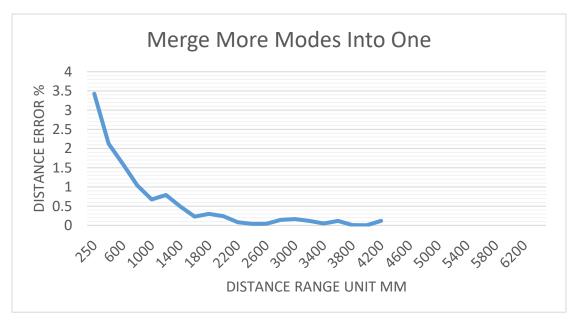
By default, there are 4 different range modes calibrated for DCAM560C, please see below table for more information:

Range number	Distance range
Range 0	0.16m~1.1m
Range 1	0.5m~2.8m
Range 2	0.75m~4.5m
Range 5	1.0m~6.0m


Please do NOT use uncalibrated modes, the measurement data will not be guaranteed.

If you need other range mode requirement, you can ask Vzense team to do range customization, reasonable NRE fee will be charged.


One range mode of the Vzense DCAM560C camera can fulfill furthest distance be at most 5 times to nearest distance. For example, if the near limitation is 0.4m, then the furthest distance in this mode can reach about 2m.

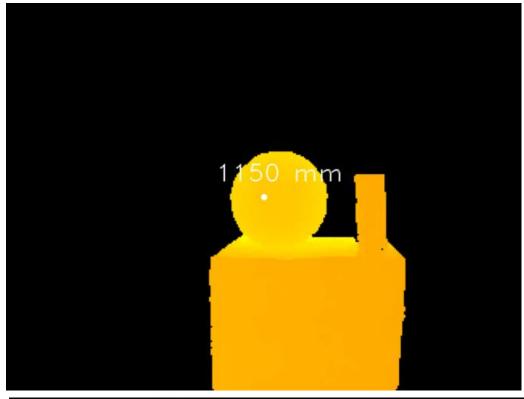

7.3 Wide Dynamic Range

As mentioned above, Most of the ToF based 3D sensing technology has range limitation to nearest and furthest distance, due to the sensor saturation of weak light strength to far objects. One range mode of the Vzense DCAM560C camera can fulfill furthest distance be at most 5 times to nearest distance. For example, if the near limitation is 0.4m, then the furthest distance in this mode can reach about 2m.

Wide dynamic range means that the camera can work at more than one range modes alternately, then the camera itself will combine the frames of all ranges into one depth frame, therefore can expand the range limitation from furthest distance to nearest distance. However the frame rate will be reduced.

Please refer to Vzense_WDR_function_application_note.pdf for the WDR implementation steps.

7.4 Data Filtering


In the software SDK and Frameviewer, we implemented data filtering to improve the depth data performance.

The filtering algorithm includes:

- Median filtering;
- Gaussian filtering;
- Bilateral filtering;
- Timing filtering;
- Flying pixel removing;

7.5 IR Image

Besides the depth image, Vzense DCAM560C camera can also output a VGA resolution IR image. And the IR image is exactly timing synchronized with the depth image. Pixel to pixel mapping is also exactly aligned.

8 DCAM560C Accessories and Package

In package item list:

DCAM560C Pro

Part No.	Desc	cription			Picture
DCAM560C Pro	Vzens	Vzense DCAM560C Pro Depth Camera Module			
814000300025	-Aviat	-CAT6a Ethernet Cable, 26AWG 4 Pair, shielded Twisted Pair; -Aviation Connector to RJ45 -Cord Length: 3m			
	-8PIN	A CODE Multipl	e Functional Cable		
	-Cord	Length: 2m			
	No.	Color	Wire Gauge	Signal	
	1	BLACK	22AWG	GND(Power GND)	
	2	RED	22AWG	DC 12-24V	
814000300026	3	BROWN	28AWG	RS485-A	
	4	GREEN	28AWG	RS485-B	
	5	WHITE	28AWG	EXT_TRIGGER	
	6	YELLOW	28AWG	NC	
	7	BLACK	28AWG	GND(Signal GND)	
	8	BLUE	28AWG	IP RESET	
VZENSE-UG560C	User	guide			

DCAM560C Lite

Part No.	Desc	ription		Picture
DCAM560C Lite	Vzen:	se DCAM560	OC Lite Depth Camera Module	
814000600015		Se Ethernet (I Length: 3m	Cable, 24AWG 4 Pair, Unshielded Twisted Pair	
814000300019	-DC P	-DC 12V~24V Input -DC Plug: 5.5±0.1mm*2.1+0.1/-0mm*11.5±0.5mm -Cord Length: 2m -RED: DC 12V~24V input, BLACK: GND		
814000300014		Multiple Fu Length: 1m Color BROWN GREEN WHITE YELLOW BLACK RED	rictional Cable(RS485, EXT IO) Signal RS485-A RS485-B Ext_Trigger NC GND NC	
VZENSE-UG560C	User	guide	i	

You can ask Vzense to do customization to the cable for any reason, for example extending the cable length.

Please do NOT use the accessories from other parts except Vzense Company, otherwise warranty will void.

Optional item list:

Item	Component	Description	Quantity
1	H3C EWPAM2NPOE	802.3at PoE Injector	1

Optional items need customer to pay for.

9 Customization Service

Vzense team has rich experience in ToF product design and delivery, we welcome customer to send customization requirement besides the standard module. Reasonable NRE fee shall be charged depends on the requirement.

Appendix

ROHS Declaration

Laser Specification

CAUTION

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed.3., as described in Laser Notice No. 56, data May 8, 2019.

The following Class1 laser label is located on the bottom of the sensor.

Manufacturer

Name: Qingdao Vzense Technology Co., Ltd.

Address: 3 Building, Qingdao Research Institute of Beihang University, No. 393 Songling Road,

Laoshan District, Qingdao, Shandong

Factory

Name: Qingdao Vzense Technology Co., Ltd.

Address: 3 Building, Qingdao Research Institute of Beihang University, No. 393 Songling Road,

Laoshan District, Qingdao, Shandong

FCC Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Caution: Any changes or modifications not expressly approved by Vzense Technology for compliance could void the user's authority to operate this equipment.

Revision History

Revised on	Version	Description	Approved by
22-Dec-2021	1.0	Add appendix with laser spec and	
		manufacturer information per	
		requirement by compliance test	